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I. INTRODUCTION 

Cryptography is the branch of study dealing with information 
security and authentication techniques. The recent advancements in 
the wireless communications area and personal communications 
systems have made providing information security a more and more 
important subject. This feature becomes more complicated when 
future technology system requirements and real-time computation 
speed are considered. To solve these security problems, a lot of 
research and development is being carried out in this matter, and 
cryptography has been playing a very important role in any 
communication system in the recent times. 
  Cryptography is the science of using mathematics to encrypt 
and decrypt data. Cryptography enables you to store sensitive 
information or transmit it across insecure networks (like the internet) 
so that it cannot be read by anyone except the intended recipient. 
  
 Cryptography involves the application of algorithms to transform a 
message into a representation of the message that is then referred to  
 
 
 
 
as the cipher-text. This algorithm must be able to then take that 
cipher-text and reverse the transformation to obtain the original 
message. In the field of cryptography, symmetric and asymmetric  
 
cryptography constitute two of the major categories of algorithms. 
Symmetric cryptography is defined by encryption and decryption 
with a single identical key and is often much more efficient than the 
alternative method of asymmetric cryptography. 
 

 
 

 Figure 1 Symmetric Cryptosystem 

Asymmetric cryptography has the characteristic of using two 
different keys in which one key is used for encryption and one key is 
used for decryption. This allows one or more parties to encrypt 

messages with a public key, and only the party that possesses the 
private key to decrypt the messages. Asymmetric cryptography 
enables digital signatures and public-key infrastructures, but is 
generally accepted to be much more computationally difficult. 
Although there are methods to greatly improve the efficiency of 
certain types of asymmetric algorithms, there is still a large focus to 
increase the computational efficiency of asymmetric cryptography. 
 

 
 

     Figure 2 Asymmetric Cryptosystem 

II. TYPES OF CRYPTOGRAPHY 
 There are two kinds of cryptography in this world that is, The one 
who stops your dear one to read your files and other to stop major 
governments to read your files.   
Cryptography can be strong or weak. Simply the weak cryptography 
is the one which can be decrypt easily by anyone. Cryptographic 
strength is measured in the time and resources it would require to 
recover the plaintext. The result of strong cryptography is cipher text 
that is very difficult to decipher without possession of the appropriate 
decoding tool. Given all of today’s computing power and available 
time even a billion computers doing a billion checks a second, it is 
not possible to decipher the result of strong cryptography before the 
end of the universe. One would think, then, that strong cryptography 
would hold up rather well against even an extremely determined 
cryptanalyst. No one has proven that the strongest encryption 
obtainable today will hold up under tomorrow’s computing power. 
Vigilance and conservatism will protect you better, however, than 
claims of impenetrability. 

III.  CRYPTOGRAPHIC TECHNIQUES 
 The concept of public-key cryptography evolved from an attempt 
to attack two of the most difficult problems associated with 
symmetric encryption[1].  The first problem is that of key distribution 
key distribution under symmetric encryption requires either (1) that 
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two communicants already share a key, which somehow has been 
distributed to them; or (2) the use of a key distribution center. 
Whitfield Diffie, one of the discoverers of public-key encryption 
reasoned that this second requirement negated the very essence of 
cryptography: the ability to maintain total secrecy over your own 
communication. 
 Asymmetric algorithms rely on one key for encryption and a 
different but related key for decryption. These algorithms have the 
following important characteristics:  
• It is computationally infeasible to determine the decryption key 
given only knowledge of the cryptographic algorithm and the 
encryption key. 
  In addition, some algorithms, such as RSA, also exhibit the 
following characteristic. 
• Either of the two related keys can be used for encryption, with the 
other used for decryption. 
A scheme has five ingredients: 

 
                             Figure 3 Public Key Cryptosystem [14] 
 

1. Plaintext: This is the readable message or data that is fed 
into the algorithm as input. 

2. Encryption algorithm: The encryption algorithm performs 
various transformations on the plaintext. 

3. Public and private keys: This is a pair of keys that have 
been selected so that if one is used for encryption, the other 
is used for description. The exact transformations 
performed by the algorithm depend on the public or private 
key that is provided as input. 

4. Cipher text: This is the scrambled message produced as 
output. It depends on the plaintext and the key. For a given 
message, two different keys will product two different 
cipher texts. 

5. Decryption algorithm: This algorithm accepts the cipher 
text and the matching key and produces the original 
plaintext. 

 The essential steps are the following: 
 1. Each user generates a pair of keys to be used for the encryption 
and decryption of messages. 
 2. Each user places one of the two keys in a public register or other 
accessible file. This is the public key.  The companion key is kept 
private As Figure 2.1 suggests, each user maintains a collection of 
public keys obtained from others. 
 3. If Bob wishes to send a confidential message to Alice, Bob 
encrypts the message using Alice’s public key. 
 4. When Alice receives the message, she decrypts it using her 
private key. No other recipient can decrypt the message because only 
Alice knows Alice’s private key. 

With this approach, all participants have access to public 
keys, and private keys are generated locally by each participant and 
therefore need never be distributed. As long as a user’s private key 
remains protected and secret, incoming communication is secure. At 
any time, a system can change its private key and publish the 
companion public key to replace its old public key. 

 
IV. THE RSA ALGORITHM 

The pioneering paper by Diffie and Hellman introduced a 
new approach to cryptography and, in effect, challenged cryptologists 
to come up with a cryptographic algorithm that met the requirements 
for public-key systems. The RSA scheme is a block cipher in which 
the plaintext and cipher text are integers between 0 and n - 1 for some 
n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is 
less than 21024.  

RSA makes use of an expression with exponentials. 
Plaintext is encrypted in blocks, with each block having a binary 
value less than some number n. That is, the block size must be less 
than or equal to log2(n) + 1; in practice, the block size is I bits, where 
2i <n ≤ 2i+1. Encryption and decryption are of the following form, 
for some plaintext block M and cipher text block C. Both sender and 
receiver must know the value of n. The sender knows the value of e, 
and only the receiver knows the value of d. Thus, this is a public-key 
encryption algorithm with a public key of PU = {e, n} and a private 
key of PR = {d, n}. For this algorithm to be satisfactory for public-
key encryption, the following requirements must be met. 
 1. It is possible to find values of e, d, n such that Medmod n = M 
for all M <n. 
 2. It is relatively easy to calculate Memod n and Cd mod n for all 
values of M <n. 
 3. It is infeasible to determine d given e and n. 
 For now, we focus on the first requirement and consider the other 
questions later.  We need to find a relationship of the form 

Medmod n = M                                            1 
 The RSA algorithm obtained is illustrated in given figure with an 
appropriate example also.  

 
                      Figure 4 RSA algorithm 

 
                                     Figure 5 RSA example 
 
V. MONTGOMERY MULTIPLICATION 
ALGORITHM 

Montgomery multiplication is a technique that combines 
multiplication and reduction into a single operation. It achieves this 
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by converting values into images within the Montgomery domain, 
computing the product of those images, and then converting back 
from the Montgomery domain.  An image in the Montgomery 
domain is defined as x’ = x·R mod m.  The basic required operation 
in Montgomery Multiplication is that of Montgomery Product.  

Montgomery modular multiplication used to calculate the 
R-L binary exponentiation is fast and suitable for hardware 
implementation[4]. It replaces the division by the modulus with 
simple right shifts, easy to implement  but requiring some pre and 
post calculations.  

             

         
Figure 6 Montgomery Multiplication Algorithm 

 
The application of Montgomery algorithm on two numbers 

A and B of n bits gives the following result:  
 
C = MM (A, B) = A × B × R-1 mod N           2 
 

Where R = 2n, and n is an integer with 2n - 1< N < 2n, such as gcd (R, 
N) = 1.  
Since R = 2n, it suffices to the modulus N to be an odd integer, where 
this condition is satisfied for the RSA.  
The Montgomery algorithm used is without final subtraction 
represented by algorithm, which allows reduction of the execution 
time in plus of the occupied area.  The architecture of the 
Montgomery modular multiplication without final subtraction is 
represented as: 

                                     

 
          Figure 7 Architecture of Montgomery Multiplication 

 
VI. Modular Exponentiation Architecture 

 Modular exponentiation is a primary operation in RSA public-key 
cryptography.  There are many different algorithms that are known to 
improve the efficiency of the modular exponentiation with varying 
degrees of complexity and each addressing different areas of modular 
exponentiation, but the basic mathematical operation is: 
                                         

 Modular exponentiation , realized by a series of modular 
multiplications, is very costly in computation time for large operands. 
    Modular exponentiation, realized by a series of modular 
multiplications, is very costly in computation time for large operands. 
The simplest and easy method to compute 1024 bits modular 
exponentiation is the binary method , known as the “Square and 
multiply”[5]. It is based on scanning the bits of the binary exponent, 
then a squaring is performed at each step and depending on the 
scanned bit value, a subsequent multiplication is performed.  

 To increase the computation performances of this operation:  
 1.  The R-L binary exponentiation is used, which scans the 
exponent bits from the least significant bit (LSB) and allows the 
squaring and multiplication to run in parallel.  
 2.  The Montgomery algorithm is used, which replaces the division 
by the modulus by a series of addition and shift operations in order to 
reduce the execution time of the modular multiplication[8][9][10]. 
 The Montgomery modular exponentiation algorithm is explained 
below based on Montgomery multiplication approach: 

 
C = Me mod n                 
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                Figure 8 Right-to-Left Exponentiation Algorithm 
  
 To adapt the Montgomery multiplication algorithm to the R-L 
binary modular exponentiation, we must make a mapping in order to 
enter in the Montgomery domain, where a series of modular 
multiplications are performed, then a re-mapping is required to 
recover the true result in the last iteration of the modular 
exponentiation out of the Montgomery domain [5]. The proposed 
architecture for fast computing the binary modular exponentiation 
based on Montgomery multiplication is:             
 

 

               Figure 9 Modular Exponentiation Architecture 
 
 
It consists of   : 
 1. A control block to manage squaring and multiplication 
operations. It has as inputs the Reset and the clock CLK. 
 2. A memory to store the exponent e connected to a shift register 
for shifting the exponent bits.  
 3. Two Montgomery modular multiplication blocks MM-SS for 
squares and MM-CS for multiplications with two registers S and C at 
their outputs to store respectively the intermediate results of squares 
and multiplications [6]. 
 4. Two registers A and B at the input of each multiplication block 
to store the inputs data (M, R2) or the intermediate results.  
 5.  Two multiplexers at the input of each multiplication block to 
select the inputs data (M, R2,1) or the intermediate results. 

 Entering in the Montgomery domain needs to perform two 
Montgomery modular multiplications in parallel:  
 MM (M, R2 (mod N)) and MM (1, R2 (mod N)), which gives as 
outputs: M × R (mod N) and 1 × R (mod N).  

• In the Montgomery domain, multiplications and squares are 
performed in parallel by two Montgomery multipliers and 
successively until the exhaustion of all the exponent bits 
[6].  

• The multiplexers select the inputs (M × R mod N) and (1 × 
R mod N) or the outputs of the multipliers according to the 
logic control to give the result (Me × R mod N).  

• Exiting from the Montgomery domain means performing a 
last Montgomery multiplication in order to eliminate the r 
factor from the result to finally obtain (Me mod N). 

VII. CONFIGURING FPGAS 
 FPGAs can be configured in two ways: in the first case, hardware 
description languages (HDL) are used to describe the behavior of the 
circuit and then this description is converted to the gate level net list. 
FPGA is programmed with that net list. This illustrated below in 
Figure.

          

                Figure 10  Process flow for configuring FPGAs 

 In the second case the desired schematic is designed and then 
converted to gate level net list and FPGA is programmed with that 
net list.  

 
Figure 11  Process flow for configuring FPGAs 

 
As designs grew in size and complexity, schematic based 

design flows ran out of stream. Visualizing, capturing, debugging, 
understanding and maintaining a design at the gate level of 
abstraction became increasingly difficult inefficient and time 

 
Inputs: e , M , N, R2 ;e = (en-1en-2... e2e1e0)2 
Output: C= Memod N;  
C = Montg(1, R2, N) , S = Montg (M , R2 , N);  
Begin  
For i = 0 to n - 1 do  
Begin  
a. If (ei = 1) then C = Montg(C, S, N); [multiply]  
b. S = Montg (S, S, N); [square]  
End;  
C = Montg (C, 1, N).  
End. 
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consuming for large designs. Thus designers preferred following 
HDL based design flow.  
 

VIII. SIMULATION TOOL 
 Initially, to start with the Verilog or VHDL code for a particular 
design is written and tested. Simulation is done using Mentor’s 
Modelsim for both VHDL and Verilog or other Verilog simulators. 
Modelsim is a simulation and a debugging tool for VHDL, Verilog, 
and other mixed-language designs from Mentor Graphics.  

 

 
 

Figure 12 Modelsim simulation flow 

 To start with a working library is created and the code is compiled 
using the commands depending upon whether the code is VHDL or 
Verilog. Verilog Compiled Simulator (VCS) from Synopsys is a 
ultra-high-capacity, high-performance by the Verilog simulator that 
incorporate the advance high-level process of abstraction and 
verification onto an open platform. 

 The basic work flow for VCS consists of two basic steps: 
a) Compiling source files into executable binary files 
b) Running the executable binary file 
 
This two-step approach simulates the design faster and uses less 
memory than other interpretive simulators. 
 
 The design is started by writing the Verilog code, which is saved 
in a file with the extension ‘.v’. Then the synthesis phase comes, the 
first step in the synthesis process is compilation. Compilation is the 
conversion of the high-level Verilog language, which describes the 
circuit at the RTL level, into a net list at the gate level.  
 The second step is optimization, which is performed on the gate-
level net list for speed or for area. At this stage, the design can be 
simulated. Finally, the physical layout of the FPGA chip is generated 
by means of place-and-route software and then FPGA is configured 
by a programming hardware.  
 

IX. SIMULATIONS RESULTS 
The results are based upon following equation: 
                               Out = a*b*R-1 mod m                   3 
Where  R-1 is taken as multiplicative inverse of R in mod m satisfying 
given equation  

                                 R*R-1 ≡ 1 mod m                        4 
 

These are the simulation results obtained in Xilinx ISE (ism 
simulator) for 16 bits and 32 bits. The results require r_square values 
as the initialized values.  

 

 
 

Figure 13 Montgomery modular exponentiation for 16 bits 
 

 In this Fig 13 the simulation result of Montgomery modular 
exponentiation  is shown that is of 16 bits. In this various inputs are 
used that is 'msg' ,'e', 'mod'. and 'r_sq' respectively. Hence the output 
comes by using these inputs is '1880d'. 
  
 
 The simulated waveform for 32 bit input values (implemented on 
vertex 6) is given as : 
 

 
 

Figure 14 Montgomery modular exponentiation for 32 bits 
 In this Fig 14 the simulation result of Montgomery modular 
exponentiation  is shown that is of 32 bits. In this various inputs are 
used that is 'msg' ,'e', 'mod'. and 'r_sq' respectively. Hence the output 
comes by using these inputs is '1391984751d'. 
 

X. DEVICE UTILIZATION 
The synthesis analysis and results are carried out using different 
FPGA boards according to their capability. The device utilization 
reports of various FPGA boards (Spartan 3E, virtex4 and virtex6) are 
given as : 

1. Device utilization on virtex 6(xc6vcx130t-2ff484) for 16 
bits Montgomery modular exponentiation is : 

 
Table 1  Utilization Summary for virtex 6 for 16 bits 

Slice logic 

utilization 

Used Available Utilization 

Number of slice 

registers 

0 93,120 0% 

Number of slice 

LUTs 

33,222 46,560 71% 

Number of 

occupied slices 

10,603 11,640 91% 

Number of bonded 

IOBs 

79 240 32% 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015                                                                            1277 
ISSN 2229-5518  

IJSER © 2015 
http://www.ijser.org 

2. Device utilization on virtex 6(xc6vlx550t-2ff1759) for 32 
bits Montgomery modular exponentiation is : 

 
Table 2  Utilization Summary for virtex 6 for 32 bits 

 
 
 
 
 
 
 
 
 
 

 
XI.   CONCLUSION AND FUTURE WORK 

A Montgomery Modular Exponentiation algorithm is 
specified, analyzed, synthesized and implemented using hardware 
description language Verilog with the help of Xilinx ISE 14.3. This 
thesis has described the architecture for computing the R-L binary 
modular exponentiation and its implementation on FPGA. The binary 
modular exponentiation is computed by a series of squaring and 
multiplications [15]. Montgomery modular multiplication has been 
chosen to realize the two operations, which has greatly reduced the 
computation time of the modular exponentiation.  

The architecture allows the parallel execution of squaring 
and multiplications. The proposed architecture can support key sizes 
up to 1024 bits using the same circuits and making some changes in 
the control block with increasing the memory which is still available 
on the FPGA as only 3% were used. The resources offered by FPGAs 
such as memory blocks and Carry Save Adders (CSA) have been 
used advantageously to speed-up the execution time of the modular 
exponentiation. 

 
As mentioned earlier the architecture presented in this thesis is an 
early prototype and there are some issues left that need to be 
addressed to improve performance: 

1) Making the word size and therefore the multiplier width 
independent from the multiplier depth to improve the 
throughput. 

2) Deferring carry propagation until the very end of the 
algorithm by deploying carry save addition as much as 
possible. 

3) Reducing the start-up latency of the initialization step to 
improve the pipeline effectiveness. 

The Ultimate goal of our research is to create a flexible 
hardware solution capable of addressing the current and future needs 
for security of information. As advances are being made in the field 
of cryptanalysis, the security parameters of cryptographic systems, 
such as key sizes, but also complete algorithms, need to adapt. To 
protect investment in the infrastructure of information systems, 
scalable and flexible architectures become increasingly important. 
The presented research is one of the first steps towards this goal, but         
many more must follow. 
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Used Available Utilization 

Number of 
slice LUTs 

319631 343680 93% 

Number of 
fully used 
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Number of 
bonded IOBs 

159 840 18% 
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